Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution.
نویسندگان
چکیده
The spatial and temporal variation of local field enhanced Raman scattering (SERS) at Ag nanowires (NWs) in aqueous solution is presented for an improved understanding of the NW structure-SERS enhancement capability relationship. Crossed Ag NWs and Ag NW bundles are found to have SERS enhancement factors much higher than single Ag NWs because of the higher density of interstitials formed by strong surface plasmon coupling when the wires are close to each other. The role of the interstitials of Ag NWs is enhanced by using unpurified Ag NWs containing Ag nanoparticles or decorating the Ag NWs surface with gold nanoparticles using galvanic replacement reaction and electroless deposition methods. This leads to an improved SERS enhancement capability as compared to purified single Ag NWs. Raman imaging reveals a different temporal response of the SERS signal in aqueous solution in comparison to the photoluminescence background of Ag NWs in the absence of Raman-active molecules. Such a different temporal response can be potentially used to separate the SERS signal from the fluorescence background. The Discrete Dipole Approximation (DDA) method is used for the first time to calculate the local field intensity of two crossed and parallel Ag NWs. Heterogeneities in the SERS spatial distribution of the interstitials and their incident-light polarization dependence are illustrated by comparing the SEM image of a selected unpurified Ag NW bundle with its Raman image.
منابع مشابه
Growth of silver nanowires on GaAs wafers.
Silver (Ag) nanowires with chemically clean surfaces have been directly grown on semi-insulating gallium arsenide (GaAs) wafers through a simple solution/solid interfacial reaction (SSIR) between the GaAs wafers themselves and aqueous solutions of silver nitrate (AgNO(3)) at room temperature. The success in synthesis of Ag nanowires mainly benefits from the low concentration of surface electron...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملHeteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping.
Metallic nanoparticle-decorated silicon nanowires showed considerable promise in a wide range of applications such as photocatalytic conversion, surface-enhanced Raman scattering, and surface plasmonics. However there is still insufficient amount of Raman scattering in Si nanowires with such decoration. Here we report the heteroepitaxial growth of Ag nanoparticles on Si nanowires by a surface r...
متن کاملLanthanum Telluride Nanowires: Formation, Doping and Raman Studies
A new approach for the synthesis of freely dispersible one-dimensional (1D) lanthanum telluride nanowires (La2Te3 NWs) in the solution phase is reported. The process involves a reaction between tellurium nanowires (Te NWs) and lanthanum nitrate (La(NO3)3) at room-temperature. Te NWs act as templates for the formation of La2Te3 NWs. The aspect ratio of the as prepared La2Te3 NWs is the same as t...
متن کاملRemote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons.
Using propagating plasmons on silver nanowires as an excitation source we perform surface-enhanced Raman scattering (SERS) at a nanoparticle/wire junction located remotely from the laser illumination spot with sensitivities in a few molecules range. Simultaneous multisite remote-excitation SERS sensing can also be achieved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2013